1.两弹元勋元是指谁?

2.1960年中国航天事业发展历程

3.高光谱遥感概述

4.人造卫星主要性能和用途

5.下雨多大以上算是暴雨?

6.中国火箭历史发展

上海风云气象仪器有限公司FYF-1_上海风云气象仪器有限公司

1. 风洞群就是某一地区有若干个风洞,就如同“机群”一样。

风洞

风洞,简单地说,就是根据运动的相对性原理,用以模拟各种飞行器在空中飞行的庞大试验设备。风洞是我国航空航天飞行器的“摇篮”,所有的飞机、火箭、卫星、导弹、飞船都是被风洞“吹”上天空的。

阳春3月,记者走进我国自主设计建造的亚洲最大的立式风洞,领略风洞里独特的风景。

置身人造“天空”

秦岭之巅还残雪点点,山脚之下已是桃花吐艳。汽车驶过一段蜿蜒的山路,眼前景象豁然开朗:翠绿的山林间,一座5层高的建筑拔地而起。

“我们到了,这就是亚洲最大的立式风洞。”听到陪同人员介绍,记者感到有些失望,因为眼前的景象与想象中完全不一样。新建成的立式风洞不算高大,也不显得很威武,甚至不如城市里常见的摩天大楼。

从外表看,与普通房屋唯一不同的是,该建筑身上“背”着一根粗大的铁管。技术人员对记者介绍:“可不能小瞧这铁家伙,它是产生气流的主要通道。”

其实,风洞普通的外表下有着神奇的“心脏”。步入其中,记者发现这片人造“天空”完全是用高科技的成果堆砌而成。

风洞建设是一个涉及多学科、跨专业的系统集成课题,囊括了包括气动力学、材料学、声学等20余个专业领域。整个立式风洞从破土动工到首次通气试验仅用了2年半,创造了中国风洞建设史上的奇迹。

大厅里,螺旋上升的旋梯簇拥着两节巨大的管道,好不壮观!与其说它是试验设备,不如说是风格前卫的建筑艺术品。

一路参观,记者发现该风洞“亮点”多多:实现了两个摄像头同时集试验图像,计算机自动判读处理;率先将世界最先进的中压变频调速技术用于风洞主传动系统控制,电机转速精度提高50%……

负责人介绍说,立式风洞是我国庞大风洞家族中最引人瞩目的一颗新星,目前只有极少数发达国家拥有这种风洞。

感受“风”之神韵

风,来无影去无踪,自由之极。可在基地科研人员的手中,无影无踪无所不在的风被梳理成循规蹈矩、各种强度、各种“形状”的气流。

记者赶得巧,某飞行器模型自由尾旋改进试验正在立式风洞进行。

何谓尾旋?它是指飞机在持续的失速状态下,一面旋转一面急剧下降的现象。在人们尚未彻底了解它之前,尾旋的后果只有一个:机毁人亡。资料显示,1966年至13年,美国因尾旋事故就损失了上百架F-4飞机。

控制中心里,值班员轻启电钮,巨大的电机开始转动。记者不由自主地用双手捂住耳朵,以抵挡将要到来的“惊雷般的怒吼”。可没想到,想象中的巨响没有到来,只有空气穿流的浅唱低吟。30米/秒、50米/秒……风速已到极至,记者站在隔音良好的试验段旁,却没有领略到“大风起兮”的意境。

你知道50米/秒风速是什么概念?胜过飓风!值班员告诉记者,如果把人放在试验段中,可以让你体验被风吹起、乘风飞翔的感觉。

我国首座立式风洞已形成强大的试验能力。负责人告诉记者:该型风洞除可完成现有水平式风洞中的大多数常规试验项目,还能完成飞机尾旋性能评估、返回式卫星及载人飞船回收过程中空气动力稳定性测试等。

资料链接

世界上公认的第一个风洞是英国人于1871年建成的。美国的莱特兄弟于1901年建造了风速12米/秒的风洞,从而发明了世界上第一架飞机。风洞的大量出现是在20世纪中叶。到目前为止,我国已经拥有低速、高速、超高速以及激波、电弧等风洞。

群山连绵,植被茂密。从外表看,很难想象山里有洞,洞里卧虎藏龙。这些人工开凿的巨大山洞绵延数公里,横贯几座山,构成了目前中国也是亚洲最大的风洞群,包括低速风洞群、高速风洞群和超高速风洞群,分别应用于不同的研究试验范围。

2.4米×2.4米的大型风洞,是亚洲最大的跨声速风洞。走进这个世界级的大风洞,只见一枚国产新型导弹模型正在接受严格的气动试验。站在现代化的测试大厅,聆听着滚滚风雷的咆哮,看着试验数据在大屏幕上不断跳动,记者的血液一下子沸腾起来。

风洞试验,简单讲就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中的各种复杂飞行状态,获取试验数据。这是现代飞机、导弹、火箭等武器研制、定型的“必由之路”。

在高速风洞研究所的陈列室里,一排排“长征”系列运载火箭,各种新型作战飞机,各种战略、战术导弹的模型,看得人眼花缭乱。研究所负责人告诉记者,空气动力学是航空、航天工业的基础学科。风洞试验作为它的主要研究手段,其水平高低与一个国家的尖端科技、尤其是国防军事实力的强弱紧密相关。

因此,世界发达国家都非常重视发展空气动力试验研究机构。据了解,德国在1907年就成立了“哥廷根空气动力试验院”,并在此后不惜巨资修建了一批低速、高速、超高速和特种风洞,在世界上率先研制出喷气式飞机、弹道导弹;美国于1915年就成立了国家空气动力研究机构。

新中国从零开始发展航空航天事业时,风洞成为制约技术发展的“瓶颈”。当发达国家拥有了高性能的飞机、导弹时,中国自己研制的飞机、设计的导弹只有花大量外汇,拿到别国的风洞去做试验,还要看别人的脸色行事。而今天,任何先进的导弹、飞机,都可以在中国自己的风洞里拿到出厂的“通行证”。仅去年,中心的高速风洞研究所就先后试验解决了数百个技术问题,吹风试验5次打破历史最高纪录。

风洞人告诉记者,这些先进装备都是从这里的风洞“吹”出去的。他们说,那还只是“当年勇”,此刻我们所在的2.4米×2.4米风洞,是19年12月首次通气试验宣告建成的。在这座大型风洞里,任何导弹、战机的模拟状态都更加接近实际飞行,可获得更为准确的试验数据。目前,我军的新型导弹、战机,都将首先从这里起飞,去精确命中目标、去自由翱翔蓝天。

太空飞船首先在这里遨游“苍穹”

大大小小的“神舟”飞船返回舱模型在记者面前摆了一大片,数一数,足足有100多个。那边还放着今年5月刚刚发射升空的“海洋”一号和“风云”一号卫星模型。

这是在中心的超高速风洞研究所。在宽敞明亮的试验大厅里,该所负责人告诉记者,航天技术是大国地位和国防实力的展示,而所有的航天飞行器,包括“ 神舟”飞船及其逃逸塔、返回舱等,都先要在风洞里“遨游太空”。尤其是飞船返回舱,在返回地球的过程中要穿越大气层,受到摩擦产生的高温及风、雨、雷、**响,因而不仅其外型设计要经过“吹风”,其防热材料的选择也需经过多次风洞试验。

记者看到,经过加工制作的“神舟”返回舱模型,被科研人员送进电弧风洞,进行“热环境烧蚀”模拟试验。洞内高达几千摄氏度的高温气流,将模型外壳的防热材料烧成了明显的“蜂窝”状。技术人员介绍说,返回舱外壳的防热材料不仅要耐高温,而且对其烧蚀后的形状、均匀度等都有苛刻的要求。为选择最佳材料,这里已反复进行了上千次的试验。

矗立在另一边的激波风洞和1.2米×1.2米风洞,也是完成飞船返回舱试验的 “功勋风洞”。激波风洞是国内最大的、可在短时间运行的脉冲型超高速气动力、气动热试验设备,能模拟6~16倍音速的高速飞行器飞行环境,为飞行器在太空中飞行的空气动力特性研究提供准确数据。在1.2米×1.2米风洞中,“神舟”飞船、返回舱、逃逸塔等大量模型经历了数千次的气动试验、获取了数万个技术参数。通过反复提取试验数据、多次修改设计方案,才迎来中华“神舟”飞天的辉煌一刻。

4月1日,记者曾在“神舟”飞船着陆场目击“神舟”三号返回舱着陆,亲眼看到悬挂返回舱的90多根伞绳依次排列,没有一点缠绕。现场的专家称,不仅返回舱外壳材料的烧蚀达到最佳状态,着陆姿态也达到了最佳状态,说明飞船的空气动力试验达到了很高水平。

可以预见,在不久的将来,从这洞中飞出的“神舟”四号、“神舟”五号… …也将在茫茫太空写下神奇的篇章。

跻身国民经济主战场

漫步大大小小的风洞群,记者的目光被一座8米×6米、长达237米的庞然大物所吸引———这就是亚洲尺寸最大的低速风洞。这条盘踞在大山沟里的“巨龙” ,曾荣登国家科技进步奖的金榜。我国的东方明珠电视塔、西安仿古塔、成都万人体育馆等著名高层建筑,就是从这里获得“准生证”的。

低速风洞研究所的负责人告诉记者,利用空气动力学研究手段,对高层建筑、复杂外形建筑及桥梁等的风载风振现象进行风洞模拟试验,可以为抗风、抗振设计提供可靠的依据。

据说,对建筑物的第一次“风动”警告来自30多年前的美国。11年,由美国著名桥梁专家设计建造的第一座斜拉索桥在强台风中扭曲折断。

19年,中心承接了对红水河铁路桥模型的风洞试验,揭开了我国民用建筑抗风研究第一页,风洞的应用范围自此由单一的军工产品,拓展到广阔的国民经济主战场。

在这里的试验大厅里,摆放着上海东方明珠电视塔、北京新首都机场候机楼、厦门海沧大桥等许多精巧漂亮的建筑模型。技术人员说,东方明珠塔在设计之初,就在低速风洞中进行了上千次模型吹风试验,并修改了设计。1994年8月,一场强台风袭击我国东南沿海地区,许多高层建筑在风中倒塌,而东方明珠塔却安然无恙。北京新首都机场楼经风洞试验后发现,大楼一侧出现负压,修改设计后才破土动工。厦门海沧大桥是厦门市有史以来建设的最大一座桥,中心对该桥的模型进行了全面气动试验,对设计提出明确修改意见,确保深受台风灾害之苦的厦门人民用上放心桥。

磁悬浮高速列车、新一代中型载货汽车也是从这里启程的。我国的解放牌和东风牌中型载货汽车,造型曾几十年不变,其气动阻力系数比国外同类汽车要高出20%,燃料消耗要多出10%。“八五”期间,东风汽车技术中心与空气动力研究中心合作攻关,经4年努力设计出了新车型,其气动阻力和耗油量指数分别接近和达到国际先进水平。

亚洲雄风笑迎新挑战

前些年,对于中国的空气动力研究成就,曾闹过一场颇具戏剧性的“国际误会”———当国际上确认中国已拥有相当水平的空气动力研究设施时,美国人一口咬定是苏联帮着干的,而俄罗斯人则坚信是美国暗中帮的忙。若干年后,他们才不得不承认,这是中国人自力更生创造的奇迹。

20世纪60年代,一群来自北京、沈阳、哈尔滨的知识精英,来到这片深山沟,开始了艰苦的创业。如今,这里已建起亚洲最大的风洞群,拥有低速、高速和超高速等各类风洞,具备各种飞机、导弹、卫星、运载火箭及太空飞船等航空航天飞行器的空气动力研究试验能力。世界著名空气动力学家、法国宇航院院长奥里维尔博士来此参观后感叹:“我确信,这是一项能使中国走向巨大成功的世界性成就!”

然而,中国风洞人丝毫没有自满。在空气动力中心的几天里,记者发现所有 “风洞人”都在紧张忙碌着。科研一线的技术人员介绍说,随着现代军事科技的飞速发展,各种新式武器装备迅速出台亮相,我们的风洞群已难以完全适应新装备发展的需要。因此,一场大规模的技术改造正在这里展开。

记者看到,某新型导弹在经过改进的风洞环境中,正进行新一轮的试验。它要经过风、雨、雷、电、火、沙等各种条件下的严格考验。

一座座风洞,一座座丰碑。近年来,空气动力研究中心靠人才建洞,在建洞中育人,培养出一大批年轻的高素质人才。在这里,记者时时能感受到拼搏者的自豪、奉献者的胸怀和开拓者的蓬勃朝气。

在世界航空航天领域,中国“风洞人”将闯出一片更加广阔的发展空间。

参考资料:

://zhidao.baidu/question/26724781.html?si=3

两弹元勋元是指谁?

会有不准的时候,但是大部分都是准的,不准的原因主要因为地面变量,比如天气会受地表山川、河流以及人类每天排放的各种气体或是污染的影响。而另一个就是时间变量,当这些不确定性因素不断叠加,短期内无限接近正确值,时间长了以后,准确率衰减就会非常厉害。

天气预报是个复杂的系统,失之毫厘,谬之千里。计算方案里面有很多数据是变化和不够精确的,北京大学物理学院大气科学系教授张庆红解释说,负责初始数据的观测站未能达到理想所需,这给天气预报的准确性打了折扣。

理想情况下,全球不同地理位置、不同高度层面需要数量级达到106至107的观测站。而现实中,这个数值仅为103至105。而且,观测站分布极不均匀,如我国的青藏高原气象观测站就很少。同时,这并不是一个国家的事情,因为大气是流动的,即使国内的观测点很密,周边国家达不到要求,也会影响初始数据。

扩展资料

除了观测站点的数据局限性,仪器观测误差与计算误差也十分可观。从加工程序来讲,由于数值预报模型建立在流体力学方程组的求解之上,在求解方程组时用差分的计算方法,必然引起计算误差。

“我们只能努力通过对物理过程的精确认识让模式更接近真实大气,但它不是真实大气环境的还原,所以基于这个模式所计算出的大气未来走势也有一定的不确定性。”张庆红说。

不同地理环境也对预报准确度影响深刻。平均水平相同的情况下,山区、湖泊、农田、城市等的天气状况都会不同。如果把数值预报计算网络缩小一半,即对更小尺度进行运算,计算量大体会增加16倍。

但在运算中,一些类似于地形等的信息依然难以充分表达,大气运动的物理过程细节不能很好反映,必须依靠预报员通过他们的分析、验证与经验再次订正。“这个时候,气象预报员不像‘科学家’反而更像个‘艺术家’。”张庆红说。

人民网-天气预报到底准不准

1960年中国航天事业发展历程

1、孙家栋,辽宁省瓦房店人。中国航天科技集团有限公司高级技术顾问,风云二号卫星工程总设计师,北斗二号卫星工程和中国第二代卫星导航系统重大专项高级顾问,原航空航天工业部副部长,中科院院士。

2、钱学森,汉族,吴越王钱镠第33世孙,生于上海,祖籍浙江省杭州市。世界著名科学家,空气动力学家,中国载人航天奠基人,中国科学院及中国工程院院士,中国两弹一星功勋奖章获得者,被誉为“中国航天之父”“中国导弹之父”“中国自动化控制之父”和“火箭之王”,由于钱学森回国效力,中国导弹、的发射向前推进了至少20年。

3、钱三强(1913年10月16日—1992年6月28日),原名钱秉穹,核物理学家。原籍浙江湖州,生于浙江绍兴,中国原子能科学事业的创始人,中国“两弹一星”元勋,中国科学院院士。

4、赵九章(1907年10月15日—1968年10月26日),籍贯浙江吴兴(今浙江湖州),出生于河南开封,大气科学家、地球物理学家、空间物理学家,中国动力气象学的创始人,中国人造卫星事业的倡导者和奠基人之一、中国现代地球物理科学的开拓者,东方红1号卫星总设计师,两弹一星元勋。

5、邓稼先(1924年6月25日—1986年7月29日),中国科学院院士,著名核物理学家,中国核武器研制工作的开拓者和奠基者,为中国核武器、原子武器的研发做出了重要贡献。1924年6月25日出生于安徽怀宁县一个书香门第的家庭。1935年考入志成中学,在读书求学期间,深受爱国救亡运动的影响。

高光谱遥感概述

中国航天事业是独立自主、自力更生发展起来的。40多年来,中国航天取得了举世瞩目的成就,在世界范围内产生了极其广泛的影响。

“嫦娥奔月”的神话故事,描绘了古代中国人登天飞行的理想。20世纪70年代,这一美好愿望初步实现了。10年4月24日,中国发射成功第一颗人造卫星,进入了航天时代。经过几十年的发展,中国航天取得了举世瞩目的伟大成就,形成了一套完全独立的航天科研、生产、发射、运行及管理的综合体系,具备了向各种地球轨道发射各种型号、大小、用途的应用卫星的能力,研制、制造、运行成功科学卫星、多种应用卫星60余颗。从综合能力上看,目前中国在世界航天的地位可以排在俄、美之后居第三位。中国航天的影响正日益扩大。

中国第一颗人造卫星“东方红”1号

1956年10月8日,中国成立了第一个导弹研究机构——国防部五院。在发展导弹事业的初期,中国曾得到苏联的援助,包括培养留学生、派遣技术专家、提供导弹实物等。我国制造的第一枚弹道导弹“1059”就是仿制苏制P2近程导弹。“1059”的仿制是依照苏联提供的P2导弹的图纸资料进行的。它全长17.7米,起飞质量为20.5吨,起飞推力为36千牛。1960年11月5日,中国仿制的第一发“1059”近程导弹在西北导弹试验基地发射成功。“东风”2号导弹是在P2导弹的基础上稍加改进而来的。主要的三项改进是:提高发动机推力和比冲;液氧箱改为单层结构;尾段改成圆柱形的铝合金结构。1961年3月21日,“东风”2号导弹进行了首次发射试验。1964年6月29日,修改后的“东风”2号进行了飞行试验,获得了成功。1966年10月27日,中国成功地进行了“东风”2号甲和核弹头的两弹结合试验。

在从近程导弹到远程导弹再到洲际导弹的发展历程中,中国先后突破了火箭发动机并联技术、大推力发动机技术、先进结构技术、多级火箭技术、稳定与控制技术、高空发动机技术、再入防热技术等关键难题。1966年12月26日,中程导弹进行首次试验;1969年11月16日,中远程导弹首次试射;11年9月10日洲际导弹首次试射;1980年5月18日洲际导弹进行了首次全程试射试验。中远程和洲际导弹的研制成功,为中国航天运载技术打下了坚实的基础。中国第一种运载火箭“长征”1号是在中远程导弹基础上改进而来的,“长征”2号系列则是在洲际导弹基础上改进的。直到目前,“长征”2号仍是中国“长征”系列火箭家族中的核心成员。

中国人造卫星研制的设想始于1958年,但研制纳入正轨是在1965年召开的第一颗人造卫星方案论证会上。10年4月24日,“长征”1号运载火箭将“东方红”1号卫星发射升空。卫星进入一条近地点439千米、远地点2 384千米的近地轨道,其轨道倾角为68.4度,运行周期为114分钟。“东方红”1号为球形多面体,直径1米,四周装有四根杆状天线。卫星总质量173千克,包括结构、温控、能源、“东方红”乐曲播放装置、短波遥测、跟踪天线、姿态测量等分系统。在研制过程中,解决的主要技术问题有热真空模拟试验、卫星温度控制、卫星天线释放、卫星用红外地面仪、光电技术等。这颗卫星在轨道运行期间基本上完成了预定任务。

中国返回式遥感卫星返回舱正在回收

“东方红”1号卫星发射成功具有极其重大的意义,它标志着中国跨入了航天时代,同时也是我国拥有洲际核打击能力的公开宣言。这个重大立刻震动了全世界,在国际范围内产生了广泛而深远的影响。至此,中国宏伟的“两弹一星”研制目标都初步得已实现。

继“东方红”1号试验卫星之后,中国又研制了“实践”系列科学卫星。“实践”1号卫星根据“综合利用,一次试验,全面收益”的精神提出了设计方案。为了进行科学探测,上面安装了大量探测仪器。“实践”1号卫星也是靠自旋稳定的卫星。它的外形与“东方红”卫星基本相同,差别是在72面球形多面体上,有28面贴有太阳能电池。“实践”1号卫星比“东方红”1号卫星稍大,约为225千克。11年3月3日,“实践”1号科学试验卫星由“长征”1号火箭发射升空,进入近地轨道。它是一颗长寿卫星,在轨道上运行了8年多,向地面发回了大量科学探测和试验数据。

返回式地球观测卫星是中国应用卫星中一个重要成员。从12年到1996年,中国利用“长征”2号火箭发射了17颗返回式卫星,获得了大量地球观测资料,对国民经济和国防建设作出了重大贡献。更为重要的是,研制返回式卫星掌握的再入防热技术对于载人航天也具有十分重要的意义。各国载人飞船在返回时,都要经历再入防热的严峻考验。

在“长征”2基础上,中国又研制了“长征”3号和“长征”4号火箭,它们的前两级基本相同。“长征”3号第用液氢液氧发动机。它使中国成为世界上少数几个能够发射地球同步卫星的国家。“长征”3号第发动机具有较高的技术水准。“长征”4号是全部用常规液体推进剂的大型运载火箭。1985 年中国正式宣布运载火箭开始

中国“神舟”号飞船返回舱

对外承揽发射任务。为此,决定在原“长征”1号,“长征”2号、“长征”3号和“长征”4号运载火箭的基础上,进行重大的技术改造,从而派生出几个新的运载火箭,包括“长征”1D、“长征”2E、“长征”2F、“长征”4A、“长征”2A、“长征”2B和“长征”4B。这些火箭基本上可以满足从小到大,从低轨道到高轨道各种卫星发射的需要,并且大多已经研制成功。1999年,“长征”2F研制成功,将中国第一艘试验飞船“神舟”1号送入轨道。目前,新一代大型运载火箭也在研制之中。

应用卫星能够对国民经济建设产生巨大影响。中国研制成功了包括通信卫星、气象卫星、卫星、导航卫星在内的各种应用卫星。通信卫星的探索工作始于10年,到15年卫星方案基本确定。这是一个一步走的方案,即不进行中、高轨道试验,不进行国外研制通信卫星初期所作的技术试验,直接发射高轨道静止通信卫星。中国的试验通信卫星呈圆柱体,直径2.1米,总高3.1米,质量910千克。年1月29日,第一颗试验通信卫星发射。4月8日,第二颗试验通信卫星发射,它成功地进入了同步轨道,并定点于东经125度赤道上空。中国的试验通信卫星上带有两个转发器,设计寿命为3年。年5月正式交付使用。

第二代实用通信卫星“东方红”2号甲转发器数量比原来增加了一倍;设计寿命提高了1.5倍;它能提供3 000路电话或4路电视,分别比“东方红”2号提高了3倍和2倍。第一颗“东方红”2号甲于1988年3月7日发射,并成功定点于东经87.5度的赤道上空。第三代中等容量通信卫星“东方红”3号于1996年发射成功,它拥有24个转发器,大大提高了通信能力。

气象卫星对于国民经济有着举足轻重的作用。20世纪70年代后期,上海卫星工程研究所开始研制“风云”系列气象卫星。“风云”1号是一颗太阳同步轨道气象卫星。卫星本体呈六面体,在主体外侧各有三块太阳能电池板;主体连同电池板共高1.67米,总长8.6米。1988年9月7日,第一颗“风云”1号卫星由“长征”4号火箭发射升空。1989年9月3日,我国从太原卫星发射中心又发射了第二颗“风云”1号试验气象卫星。

中国“神舟”3号飞船正在发射之中

从20世纪90年代到21世纪初,中国还研制并发射成功静止气象卫星“风云”2号,第三代通信卫星“东方红”3号,第一代卫星“”1号和导航卫星“北斗”1号。“东方红”3号是一颗中等容量通信卫星,星上有24个转发器。“风云”2号是一种同步轨道气象卫星,其技术性能和遥感能力都有较大的提高。由于处在同步轨道,“风云”2号观测的范围将比“风云”1号有很大的增加。19年,“风云”2号气象卫星发射成功。两颗卫星在1999年和2000年发射成功。这些卫星的研制成功对我国的通信、气象、经济、社会和科技事业产生了极大的影响。

人造卫星主要性能和用途

所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10 nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感(通常>100nm)且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。

近20年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术之一。

1.2.1 高光谱遥感的起源和发展

随着基础理论和材料科学的不断进步,近20年来,高光谱遥感技术迅速发展,已成为除雷达遥感、激光遥感、超高分辨率遥感等技术以外,当前遥感领域的又一重要研究方向。

1.2.1.1 国外的高光谱成像仪研制情况

由于高光谱遥感在地物属性探测方面的巨大潜力,成像光谱技术得到了普遍重视。

(1)机载高光谱成像仪

1983年,第一幅高光谱影像由美国研制的航空成像光谱仪(AIS-1)获取,标志着第一代高光谱成像仪的面世。1987年,美国宇航局(NASA)喷气推进实验室(JPL)研制成功航空可见光/红外成像光谱仪(AVIRIS),这标志着第二代高光谱成像仪的问世。

(2)星载高光谱成像仪

在航天领域,由美国喷气推进实验室研制的对地观测中的中分辨率成像光谱仪(MODIS),随TER2RA卫星发射,成为第一颗在轨运行的星载成像光谱仪,从2000年开始向地面传送图像。

2000年,NASA发射的EO21卫星上搭载的高光谱成像仪(Hyperion),地面分辨率为30m,已在矿物定量填图方面取得了很好的应用效果。2002年美国的海军测绘观测(NEMO)卫星携带的海岸海洋成像光谱仪(COIS)具有自适应号识别能力,满足军用和民用的不同需求。另外,2007年6月交付美Kirtland空军基地的高光谱成像传感器将通过Tac2Sat23卫星载入太空。

目前,许多国家都在积极研制自己的高光谱传感器,已明确有发射的有德国环境监测与分析的EnMAP,南非的多传感器小卫星成像仪MSMI和加拿大高光谱环境与观测者HERO。

1.2.1.2 国外高光谱影像分析技术的研究现状

在成像光谱仪快速发展的同时,地物光谱数据库、高光谱影像分析技术研究也得到了迅速发展。

地物光谱数据库技术方面,以美国最为先进,有代表性的主要有JPL标准波谱数据库、USGS波谱数据库、ASTER波谱数据库和IGCP2264波谱数据库。此外,美国空军部门和环保局针对大气污染和空气成分的诊断建立了AEDC/EPA光谱数据库,并针对美国海军研究室研制的HYDICE成像光谱仪建立了森林高光谱数据库等。部分其他国家也展开了光谱数据库技术研究和建设工作,如英国在20世纪90年代初针对海水颜色研究建立了海水光谱数据库。

美国国家航空航天局(NASA)、欧洲航天局(ESA)、日本国家空间发展局(NASDA)和大学及研究所都有专门的高光谱影像应用分析的研究机构。

国外商业遥感图像处理系统,相继增加成像光谱数据处理模块,其中具有代表性的有RSI公司的ENVI,PCI Geomatics公司的PCI,MicroImages公司的TNTmips等。

1.2.1.3 国内高光谱遥感技术发展现状

我国紧密跟踪国际高光谱遥感技术的发展,并结合国内不断增长的应用需求,于20世纪80年代中后期着手发展自己的高光谱成像系统。主要的成像光谱仪有中国科学院上海技术物理研究所研制的推扫式成像光谱仪(PHI)系列、实用型模块化成像光谱仪(OMIS)系列、中国科学院长春光学精密机械与物理研究所研制的高分辨率成像光谱仪(C2HRIS)和西安光机所研制的稳态大视场偏振干涉成像光谱仪(SLPIIS)。中国科学院上海技术物理研究所研制的中分辨率成像光谱仪(CMODIS)于2002年随“神舟”三号发射升空,并成功获取航天高光谱影像,其获取影像从可见光到近红外共30个波段,中红外到远红外的4个波段,空间分辨率为500 m。

2007年10月发射的“嫦娥1号”卫星已携带中国科学院西安光学精密机械研究所研制的干涉成像光谱仪升空,用于获取月球表面二维多光谱序列图像及可分辨地元光谱图,通过与其他仪器配合使用对月球表面有用元素及物质类型的含量与分布进行分析,获得的数据用于编制各元素的月面分布图。

从2007年到2010年,我国将组建环境与灾害监测预报小卫星星座,将携带超光谱成像仪,用0.45~0.95μm波段,平均光谱分辨率为5nm,地面分辨率为100m。

我国在积极研制具有自主知识产权的成像光谱仪的同时,在地物光谱数据技术、高光谱影像分析技术等方面的研究中也取得了一系列可喜的成果。

20世纪90年代初期,中国科学院安徽光学精密机械研究所、遥感所等单位对大量的典型地物进行了波谱集,建立了我国第一个综合性“地物波谱特性数据库”。1998年,中国国土航空物探与遥感中心建立了“典型岩石矿物波谱数据库”,其中包含了我国主要的典型岩石和矿物500 余种。2000年,中国科学院遥感所基于GIS和网络技术研制了典型地物波谱数据库及其管理系统,记录了10000多条地物波谱,并能动态生成相应的波谱曲线和遥感器模拟波段,实现了波谱数据库与“3 S”技术的链接。

1.2.2 高光谱成像仪简介

1.2.2.1 国外高光谱成像仪系统介绍

(1)航空高光谱成像仪

1983年,世界上第一台成像光谱仪AIS-1(Aero Imaging Spectrometer-1)在美国喷气推进实验室研制成功,并成功应用于植被研究、矿物填图等方面,向世界展示了高光谱成像技术具有的潜力。此后,美国机载先进的可见光红外成像光谱仪(AVIRIS)、加拿大的荧光线成像光谱仪(FLI)和在此基础上发展的小型机载成像光谱仪(AIS)、美国Deadalus公司的MIVIS,GER公司的79波段机载成像光谱仪(ROSIS-10 和 ROSIS-20)、美国海军研究所实验室的超光谱数字图像集试验仪(HYDICE)先后研制成功(表1.1)。

表1.1 国外主要的机载高光谱成像仪信息

近年来,成像光谱技术在调查、农作物长势、病虫害、土壤状况、地质勘查等方面的成功应用让世界各国看到了这项新技术的巨大前景与潜力,世界上一些有条件的国家竞相投入到成像光谱仪的研制和应用中来。各国在研制的同时纷纷参考已有成像光谱仪的先进技术,使得新研制的系统在继承了老系统各种优势的同时,很多方面得到了进一步的提高,在稳定性、探测效率、综合性能等方面均得到了很大的进步。其中,具有代表性的有美国的Probe、澳大利亚的HyMap、美国GER公司为德士古(TEXACO)石油公司专门研制的TEEMS系统等。

Probe-1和Probe-2是Earth Search Sciences公司开发的另一个有影响的航空成像光谱仪系统,该系统在0.4~2.5μm区有128个波段,光谱分辨率为18 nm。

HyMap即“高光谱制图仪”(hyperspectral mer)的简称,是以澳大利亚Intergrated Spectronics公司为主研制的。HyMap在0.25~0.45μm光谱范围有126个波段,同时在3~5μm和8~10μm两个波长区设置了两个可供选择的波段,共有128个波段。其数据在光谱定标、辐射定标和信噪比等方面都达到了较高的性能,总体光谱定标精度优于0.5 nm;短波红外波段(2.0~2.5μm)的信噪比都高于500∶1 ,有的波段其信噪比甚至高达1000∶1。

TEEMS是德士古能源和环境多光谱成像仪(Texaco energy & environmental multispectral imaging spectrometer)的简称。这是一台由美国地球物理和环境研究公司(GER)应德士古的技术要求与德士古的专家合作专门研制的具有200 多个波段、性能十分先进的实用型高光谱成像仪。该系统在紫外、可见光、近红外、短波红外、热红外波段等波谱均具有成像能力,从而在石油地质勘探特别是在勘探与油气藏有关的特征中具有很大潜力。

近年来热红外成像光谱仪已有了实质性的进展。最具有代表性的是美国宇航公司研制的空间增强宽带阵列光谱仪系统(spatially enhanced broadband array spectrograph system,SEBASS)。SEBASS有两个光谱区:中红外,3.0~5.5μm,带宽为0.025μm;长波红外,7.8~13.5μm,带宽为0.04μm。它在中波红外区和长波红外区分别有100个、142个波段;所使用的探测器为两块128*128的Si:As焦平面,有效帧速率为120Hz,温度灵敏度为0.05℃,信噪比>2000。热红外成像光谱仪为更好地反映地物的本质提供了珍贵的数据,已经被应用于探矿、地质填图、环境监测、农林制图、植被长势等诸多领域。

(2)航天高光谱成像仪

美国先后研制出中分辨率成像光谱仪(MODIS),EO-1高光谱卫星,并与日本合作研制出的先进星载热发射反射辐射计(advanced satellite thermal emission/reflection radiometer)以及美国军方的“Might-Sat”高光谱卫星,在航天成像光谱技术研究方面一直在世界遥遥领先。

MODIS是EOS-AM1卫星(1999年12月发射)和EOS-PM1(2002年5月发射)上的主要探测仪器——中分辨率成像光谱仪,也是EOS Terra平台上唯一进行直接广播的对地观测仪器。通过MODIS可以获取0.4~14μm范围内的36个波段的高光谱数据,为开展自然灾害、生态环境监测、全球环境和气候变化以及全球变化的综合性研究提供了重要的数据源。

MODIS是搭载在terra和aqua卫星上的一个重要的传感器,是卫星上唯一将实时观测数据通过x波段向全世界直接广播,并可以免费接收数据并无偿使用的星载仪器。MODIS可获取0.4~14μm范围内的36个波段的高光谱数据,为开展生态环境研究、自然灾害监测、全球环境和气候变化等研究提供了重要的数据源。

ASTER搭载在Terra卫星上的星载热量散发和反辐射仪,是于1999年12月18日发射升空的,由日本国际贸易和工业部制造。一个日美技术合作小组负责该仪器的校准确认和数据处理。ASTER是唯一一部高分辨解析地表图像的传感器,其主要任务是通过14个频道获取整个地表的高分辨解析图像数据——黑白立体照片。ASTER能在4到16天之内对同一地区进行成像,具有重复覆盖地球表面变化区域的能力。ASTER数据特点之一是基于用户要求的观测,即根据用户提出的要求来随时随地地获取影像。ASTER的宽谱覆盖和高分辨能力给科学家们在诸如监测冰河的前进与退却,对潜在的活火山的监测,鉴别作物能力,对云层形态及物理状况的监测,湿地评估,热污染监测,珊瑚礁的退化,土壤及地质的表面温度绘图,以及测量地表的热平衡等众多学科领域提供了可供鉴定的信息。

美国宇航局(NASA)的地球轨道一号(EO-1)是美国NASA新千年的一部分,在2000年11月21日发射。地球观测1号卫星与LandSat-7覆盖相同的地面轨道,两颗卫星对同一地面的探测时间相差约1分钟的时间。EO-1带有三个基本的遥感系统,即高级陆地成像仪(advanced land imager,ALI),高光谱成像仪(HYPERION)以及大气校正仪(liner etalon imaging spectrometer arrey atmospheric correction,LAC)。EO-1上搭载的高光谱遥感器hyperion是新一代航天成像光谱仪的代表,也是目前唯一在轨的星载高光谱成像光谱仪以及唯一可公开获得数据的高光谱测量仪,共有242个波段,光谱范围为400~2500nm,光谱分辨率达到10nm,空间分辨率为30m。

2000年7月,美国发射的MightSat-Ⅱ卫星上搭载的傅立叶变换高光谱成像仪(fourier transform hyperspectral imager,FTHSI)是干涉成像光谱仪的成功典范。

欧洲空间局于2001年10月成功发展了基于空中自治小卫星PROBA小卫星的紧密型高分辨率成像光谱仪(CHRIS),并发射成功。CHRIS在415~1050μm的成像范围内有五种成像模式,不同的模式下其波段数目、光谱分辨率和空间分辨率不等,波段数目分别是18 ,37和62 ,光谱分辨率为5~15nm,空间分辨率为17~20m或者34~40m。CHRIS能够从五个不同的角度(观测模式)对地物进行观测,这种设计使得其能获取地物反射的方向性特征。

欧洲空间局继美国AM-1 MODIS之后于2002年3月又成功发射了Envisat卫星,这是一颗结合型大平台先进的极轨对地观测卫星。其中分辨率成像光谱仪(MERIS)为一视场角为68.5°的推扫型中分辨率成像光谱仪,其地面分辨率为300m,在可见光-近红外光谱区有15个波段,可通过程序控制选择和改变光谱段的布局。

日本继ADEOS-1之后于2002年12月发射了后继星ADEOS-2 ,其上搭载了日本宇宙开发事业团的两个遥感器(AMSR和GLI)和国际或国内合作者提供的三个遥感器(POLAR,ILAS-Ⅱ,Sea Winds)。GLI在可见光-近红外和短波红外分别有23个、6个波段,而在中红外和热红外则有7个波段。到目前为止,已发射的具有代表性的星载成像光谱仪如表1.2所示。

表1.2 国外主要星载高光谱成像仪

1.2.2.2 我国高光谱成像仪系统介绍

(1)航空高光谱成像仪

我国成像光谱仪的发展经历了从多波段扫描仪到成像光谱扫描,从光机扫描到面阵CCD探测器固态扫描的发展过程。

“八五”期间,新型模块化航空成像光谱仪(modular aero imaging spectrometer,MAIS)的研制成功标志着我国的航空成像光谱仪技术和应用取得了重大突破。此后我国自行研制的推扫型成像光谱仪(PHI)和实用型模块成像光谱仪系统(OMIS)在世界航空成像光谱仪大家庭里占据了重要的地位。

(2)航天高光谱成像仪

我国于2002年3月发射的神舟3号无人飞船中就搭载了一个中分辨率的成像光谱仪(CMODIS),该仪器共有34个波段,波长范围在0.4~12.5μm。此外,环境减灾卫星搭载了115个波段的高光谱遥感器。“风云-3”气象卫星搭载的中分辨率成像光谱仪具有20个波段,成像范围包括可见光、近红外、中红外和热红外;“嫦娥一号”卫星搭载了我国自行研制的干涉成像光谱仪来探测月球物质。

1.2.3 高光谱遥感成像特点与数据表达

高光谱成像获取的图像包含了丰富的空间、辐射和光谱三重信息。其主要特点是将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息。高光谱数据是一个光谱图像的立方体,它由空间图像维、光谱维(从高光谱图像的每一个像元中可以获得一个“连续”的光谱曲线)和特征空间维(高光谱图像提供的是一个超维特征空间,挖掘高光谱信息需要深切了解地物在高光谱数据形成的N维特征空间中分布的特点与行为)。

1.2.4 高光谱遥感的主要应用领域

由于高光谱遥感能提供更多的精细光谱信息,有些学者将高光谱遥感的研究从最开始的矿物识别扩展到了水体、植被与生态、环境勘探等方面,但目前主要集中在地质、植被和水环境等研究领域。

1.2.4.1 在植被监测中的应用

高光谱遥感由于其具有超高的光谱分辨率,为植被参数估算与分析,植被长势监测及估产等方面提供了有力的支撑。

1)植物的“红边”效应:“红边(REP)”是绿色植物叶子光谱曲线在680~740nm之间变化率最快的点,也是一阶导数光谱在该区间内的拐点。“红边”是植物光谱曲线最典型的特征,能很好地描述植物的健康及色素状态。当“红边”向红外方向移动时,一般可以判定绿色植物叶绿素含量高、生长活力旺盛;相反,当“红边”向蓝光方向移动时,一般可能是植物处于缺水等原因造成叶片枯黄等不健康状态。当植物覆盖度增大时“红边”的斜率会变陡。

2)植被指数:植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况,是利用遥感光谱数据监测地面植物生长和分布、定性、定量评估植被的一种有效方法。根据不同的研究目的,人们已经提出了几十种植被指数,如比值植被指数RVI,归一化植被指数NDVI,差值环境植被指数DVIEVI,垂直植被指数PVI,土壤调整植被指数SAVI等。

1.2.4.2 在农业中的应用

高光谱遥感在农业中的应用,主要表现在快速、精确地进行作物生长信息的提取、作物长势监测、估算植被(作物)初级生产力与生物量、估算光能利用率和蒸散量及作物品质遥感监测预报,从而相应调整物资的投入量,达到减少浪费,增加产量,改善品质,保护农业和环境质量的目的。使用高光谱遥感数据估计作物的农学参数主要有两类方法:一是通过多元回归方法建立光谱数据或由此衍生的植被指数与作物农学参数之间的关系;二是通过作物的红边参数来估计作物的物候性状及其农学参数。

1.2.4.3 在大气和环境方面的应用

高光谱遥感凭借其超高的光谱分辨率可以识别出宽波段遥感无法识别的因大气成分变化而引起的光谱差异,使人们利用高光谱遥感对周围的生态环境情况进行定量分析成为可能。利用高光谱技术可以探测到污染地区的化学物质异样,从而确定污染区域及污染原因;高光谱图像也可用来探测危险环境因素,例如,精确识别危险废矿物,编制特殊蚀变矿物分布图,评价野火的危险等级,识别和探测燃烧区域等。

1.2.4.4 在地质方面的应用

地质矿产调查是高光谱遥感应用中最成功的一个领域。各种矿物和岩石在电磁波谱上显示的诊断性光谱特征可以帮助人们识别不同矿物成分。在地质方面主要利用其探测岩石和矿物的吸收、反射等诊断性特征,从而进行岩石矿物的分类、填图和矿产勘查。

1.2.4.5 在军事上的应用

由于高光谱影像具有丰富的地面信息,可用于精确识别地物种类,在军事侦察、识别伪装方面得到了成功的应用。美国海军设计的超光谱成像仪可在0.4μm~2.5μm光谱范围内提供210 个成像光谱数据,可获得近海环境目标的动态特征,例如海水的透明度、海洋深度、海洋大气能见度、海流、潮汐、海底类型、生物发光、海滩特征、水下危险物、油泄露、大气中水汽总量和次见度卷云等成像数据,对近海作战有十分重要的支撑意义。

下雨多大以上算是暴雨?

人造卫星

中国人造卫星的研制单位为中国空间技术研究院和上海航天技术研究院,已研制成功的人造卫星种类有科学实验卫星、技术试验卫星、返回式遥感卫星、地球静止轨道通信卫星、太阳同步轨道气象卫星和地球静止轨道气象卫星等,正在研制的有卫星等几种新型卫星。除人造卫星外,中国还根据《高技术研究发展纲要》(即“863”),开展了航天高科技的预先研究,取得了一大批成果。表2列出了中国部分人造卫星的轨道和主要性能。

在中国的人造卫星中,返回式二号、东方红三号、风云二号和实践四号等卫星为中国近10年来致力于卫星上水平所取得的新成果。

返回式二号卫星装载的地物相机为节点式可见光全景相机。这种相机避开了返回式零号卫星棱镜扫描式全景相机要求胶片移动速度与像移速度同步的问题,能有效地提高摄影分辨率。在轨道高度和地物对比度等相同的情况下,返回式二号卫星所摄地物照片的分辨率要比返回式零号卫星地物照片的分辨率提高1倍多,达到国际同类卫星的性能水平。

东方红三号卫星为中国通信卫星中性能最高的卫星。这颗卫星装有24台C频带通信转发器,能同时转发15000路双向电话和6路彩色电视,其性能与国际通信卫星5和5A相当,达到80年代末期世界通信卫星的先进水平。

风云二号卫星填补了中国在地球静止轨道气象卫星上的空白。该卫星载有一台三谱段通道(1个可见光通道、1个红外通道和1个水气通道)多光谱扫描辐射仪,每半小时获取、传输一幅覆盖将近三分之一地球表面积的全景原始云图,其性能达到90年代初期国外同类产品的先进水平。

表2 中国部分人造卫星的轨道和主要性能 类别 名称 代号 发射年份 发射

数量 轨道

类型 设计

寿命 发射质量

(公斤) 用途 备注

科学卫星 实践四号 SJ-4 1994 1 GTO 半年 400 科学探测

返回式

遥感卫星 返回式零号 FSW-0 14~1987 10 LEO 3~5天 1800 对地摄影 第一颗未入轨

返回式一号 FSW-1 1987~1993 5 LEO 8天 2100 对地摄影 最后一颗未返回

返回式二号 FSW-2 1992~1996 3 LEO 15天 2600~3000 对地摄影

通信卫星 东方红二号 DFH-2 ~1986 3 GSO 3年 900 通信广播 第一颗未被

送入GTO

东方红二号甲 DFH-2A 1988~1991 4 GSO 4.5年 ~1000 通信广播 最后一颗未

被送入GTO

东方红三号 DFH-3 1994~19 2 GSO 8年 2200 通信广播 第一颗未能

定点使用

气象卫星 风云一号 FY-1 1988~1990 2 LSSO 2年 750 气象探测

风云二号 FY-2 19 1 GSO 3年 1360 气象探测

注:GSO-地球静止卫星轨道(简称地球静止轨道)

实践四号卫星为高性能的小型科学卫星。该卫星的发射成功,使中国首次获得了海拔200公里到36000公里之间的空间环境参数和高能粒子效应资料。

这几颗卫星的发射成功,表明中国在几个重要的卫星领域已把与世界先进水平的差距缩短到10年左右。

3.发射场和测控网

中国已建成了3个卫星发射中心。它们是主要用于发射顺行轨道卫星的酒泉卫星发射中心,用于发射太阳同步轨道卫星的太原卫星发射中心和用于发射地球静止轨道卫星的西昌卫星发射中心。

中国已建成了以西安卫星测控中心为龙头的航天测控网。测控网站主要分布于内陆地区,并具有万吨级的远洋航天测量船。

上述事实表明,中国的空间技术体系不仅能圆满地完成各类人造卫星的研制发射任务,而且具备了研制发射更复杂的空间飞行器的能力。

中国卫星应用的成效

中国在发展本国人造卫星的同时,利用本国的卫星和国外一些为公众服务的卫星,致力于开展卫星应用,使人造卫星逐步成为中国社会生产力中一个重要的组成部分。

中国现已建立了卫星普查、卫星通信、卫星气象、卫星、卫星微重力试验、卫星科学研究等卫星应用系统。这几类卫星应用已达到一定规模,并取得较丰硕的成果。

1.卫星普查

中国返回式遥感卫星拍摄的数万米地物照片和其它卫星获得的地物信息,经国家经济、军事和科研部门处理分析后,从中获取到许多用其它手段得不到或难以得到的资料,为国家进行国土规划和宏观经济决策等方面的工作提供了重要依据。

利用返回式遥感卫星照片,国家有关部门曾组织进行了京津唐、塔里木盆地、黄河三角洲等7个区域的和环境调查,各有关单位开展了其它方面的多项专题应用。实践表明,返回式遥感卫星的照片具有视野宽阔、信息量丰富、直观性好、清晰度高、能提供宏观和实用性强的第一手普查资料等特点,具有相当高的实用价值。

2.卫星通信

中国利用本国的通信卫星和租用、购买国外通信卫星相结合,使中国的卫星通信较好地满足了国内对卫星通信的需求。

中国于1988~1990年发射成功的3颗东方红二号小容量通信卫星,曾一度使中国用于卫星通信的转发器的国产化程度达到三分之二。

中国于19年发射成功的东方红三号卫星经过一年多在轨调试和试用后,于1998年8月正式交付使用。该卫星已成为现今中国卫星通信的重要力量。

中国卫星通信事业的进步,使中国广播和电视传输的落后状况得到明显改观,促进了中国通信事业的现代化以及经济、文化、教育、国防等事业的发展。中国的电视和广播的人口覆盖率已分别超过85%和79%。

3.卫星气象

中国利用本国的气象卫星和外国的气象卫星,逐步发展了卫星气象事业,现已建立了由北京气象卫星资料处理中心和北京、乌鲁木齐、广州3个气象卫星资料站组成的具有国内外兼容性的气象卫星资料接收处理系统。该系统为中国的天气预报工作提供了大量的实时云图。

4.卫星

中国已建成能接收各类(光电型、雷达型)卫星数据的遥感卫星地面站。利用该站发布的数据,各部委和各省市在调查、环境监测、国土整治和规划、土地利用和普查、农作物估产、地质勘探、重大灾害评估等方面做了大量有成效的工作。在1998年夏季长江中、下游和嫩江、松花江流域发生特大洪水之际,遥感卫星地面站根据国外雷达卫星获取的微波遥感资料,对灾情最严重的地区进行了全天时、全天候的监测,为抗灾、救灾提供了重要的依据。拟于1999年发射的中国和巴西联合研制的卫星,将成为中国卫星的一个新的数据源。

5.卫星微重力试验

中国是现今世界上4个掌握卫星返回技术的国家和组织之一,也是世界上3个拥有进行空间微重力试验手段的国家之一。

中国自1987年以来,利用发射的返回式遥感卫星搭载进行了多项微重力试验工作,在微重力环境下的材料加工和生物生理等方面取得了多方面有意义的成果。累计搭载发射的试验项目加上安装设备的总质量,相当于发射了一颗小型返回式卫星。

6.卫星科学研究

中国利用实践系列等科学卫星和装载于通信卫星、气象卫星内的探测仪器所获取的空间环境资料以及国外公布的空间科学数据,开展了空间科学研究工作,取得了一大批高水平的研究成果。

中国火箭历史发展

暴雨

暴雨(torrential rain)

1小时内雨量大于等于16mm,或24小时内的雨量大于等于50mm的雨。

我感觉到非常荣幸。我今天比较系统的介绍一下关于暴雨的形成、暴雨引起的灾害以及暴雨怎么去监测、怎么去预测,主要介绍一下这些内容。暴雨是我们国家一个很重要的灾害,尤其是在长江流域,或者讲整个的淮河以南地区,当然黄河也曾经发生过很大的洪涝。所以总体上来讲。暴雨是我们国家主要的一个气象灾害。了解暴雨、研究暴雨是刻不容缓的一个任务。现在我们主要是用雷达和卫星来观测和预报暴雨的发生发展的过程,但到以后,大体上到2025年的时候,我们的数值模式的分辨就一公里。一公里什么概念呢?我们北京这个区域,我们一个点到一个点距离只有一公里。我刚才讲了,我们现在一个测站到一个测站的距离是多少呢?是二百到三百公里,我们到了2025年,我讲的等于我们一个点和一个点的观测的距离只有一公里。也就是说,这个街道到那个街道它之间有什么差别?我都可以在计算机里面算出来。我们今后可以做三十天的预报,一公里什么概念?就相当于我们从这个卫星上面去看地面,这个地面上的地形就清晰到这个程度,这就叫一公里。如果是看北京,可以把北京的街道的分布基本上都能看出来。

所以再过二十年,整个的气象事业的发展、气象科学技术的水平的发展,随着计算机、电子学科的发展以及我们气象科学本身的发展,将会有一个非常大的变化。到那个时候我们的预报水平,三天里边的预报大概正确率绝对不会低于90%。所以从这个角度上来讲,我想我们的气象科学和现在比,就像我们现在和二三十年以前比一样,有一个面貌全新的一个概念。我想我的讲座就讲完了,谢谢大家!

《暴 雨》 (全文)

我今天有机会给大家介绍一下暴雨,我感觉到非常荣幸。我今天比较系统的介绍一下关于暴雨的形成、暴雨它引起的灾害、以及暴雨怎么去监测、怎么去预测,主要介绍一下这些内容。暴雨是我们国家一个很重要的灾害,尤其是在长江流域。或者讲整个的我们国家淮河以南地区,当然黄河也曾经发生过很大的洪涝。所以总体上来讲暴雨是我们国家主要的一个气象灾害,那么大家都很关注2003年汛期,在淮河流域再一次发生了洪涝,那么这张图就是由我们国家自己研制的“风云2号”气象卫星所发布的卫星云图,我们可以看出来在淮河流域的上空,长时间的一直维持了一条云带。

那么譬如说,我们在1998年,由于洪涝在长江流域,整个造成我们国家三千多亿人民币的损失。有一千多个人,在这次洪涝里边丧失了生命。因此洪涝灾害和旱灾不一样,洪涝灾害就像我们一个人急一样,它会引起人民生命财产的突然之间的损失。而旱灾一般来讲就像我们的慢,它影响的时间很长。同样会造成很大的损失,但主要的就是在经济上、尤其是农业生产。所以从这一个表上面我们可以看出来,我们最近几年,我们国家整个的因为气象灾害所受到的损失越来越大。随着我们国民经济的发展,由于气象灾害所造成的损失,也随着国民经济的发展而增大。所以这一点上面来讲是很显然的。

我们同样也是洪涝的灾害,譬如说在2001年8月5号到10号在上海有一次热带气旋的影响,造成大的暴雨,整个上海就灌了水。那么像这样的灾害,如果在二十年以前大家知道,就是几条被子湿掉了。但是到了今天,我们每个家里面都是各种各样家电都有,要被水里一泡,那损失可大了。那么工厂里边同样的,现在工厂的设备和几十年以前工厂设备那是完全不能比。所以随着我们国民经济的发展,由于暴雨的灾害,我们整个经济的损失也越来越严重。那么这个图就是由于淮河流域的洪涝造成的水灾,我们可以看到农村里边淹水的情况。

那么现在非常重要的一点就是暴雨预报,因为洪涝我们要取措施去预防,1998年的洪涝对三峡水库来讲是一个很大的威胁,因此我们能不能把暴雨预报做好,对确保三峡水库建设的安全是重要的。在这个过程里边,我们中国气象局在确保三峡水库安全度过洪涝的这个时期起了很大的作用。我们基本上确保了整个的三峡水库在洪涝期间气象的预报,气象的保障。譬如说到了洪涝的后期,那个时候三峡水库已经由于土坝,就是泥土做的坝,长期的泡在水里边,已经受到了很大的影响。如果再有一次超过五十毫米的大雨的话,那么三峡水库里边所有的机械设备全部要撤离。人员要撤离,要确保机械设备和人员的安全。那么这个时候长江三峡的总公司就要求中国气象局要给出正确的预报,在后期有没有可能再发生一次超过五十毫米的暴雨?如果要发生一次超过五十毫米的暴雨,这些人员设备全部要撤离三峡的工地。那么国家气象中心正确地预报降水不会超过五十毫米,因此整个的工程没有能够停下来。如果把这个整个的装备人员撤离三峡水库,大概估计工程的进度要延缓一年。所以气象保障,尤其是暴雨预报、灾害的预报,对确保我们国家重大的工程是起了很大的作用。但是暴雨预报可不是一个简单的事,暴雨预报主要是有两个最困难的地方,第一个暴雨它突发性强,大家知道,夏天我们看到了西面有一点很大的这种乌黑黑的云上来。不要很长的时间就可以下很大的雨,这种就是我们讲暴雨它的突发性。而且尤其在梅雨期间那是经常发生,因此暴雨它的突发多发给我们预报带来了很大的影响,而且暴雨的面积通常来讲是比较小的。

譬如说我举个例子1998年,1998年的7月21号武汉三天的暴雨,有一小时的降雨量达到88.4毫米。三天的降雨量降在武汉的城市里边的雨水相当于什么呢?我不知道在座的听众有没有去过武汉?武汉市区里边有个叫东湖,三天里边降的水就相当于1.5倍东湖的涌水量,就倒在武汉的城市的上空。那么这样子一定会造成武汉城市里边的积水造成灾害,所以从这一点上来讲,如何去预报这个暴雨它是一个非常难的地方。尤其是它的转折,关键的时刻,特别难。什么时候发生?它发生在什么地方?它的强度有多大?这一点在我们气象上来讲,在气象预报上来讲是一个非常难的事情。

第二个暴雨预报它一定是在某种大的大气环流,也就是我们大气里边运动的总的状态的背景下面发生的。尤其是大家一定经常会听到,如果关心气象预报的话,一定会经常听到所谓的负热带高压。负热带高压也就是夏天控制我们东南沿海的一个高压带,这个高压对我们整个的它的东面的气流有很大的影响。在这个负热带高压的西面,一定是偏南气流。而这个偏南气流就把海上的大量暖湿的空气从南面就带到了北面,因此这个负热带高压的变动,可以使得我们的水气就直接的从南面华南一直送到长江流域。这个就造成了北面的冷空气过来,南面的暖湿空气北上。冷暖空气一碰撞,它就产生了很强的对流。那么暖的空气过来,冷的就向下走,暖的就向上走。这样暖空气拼命就向上走,一向上走它又暖又湿。因此向上走的过程里面呢,它就冷却变成为降水,然后掉下来。所以这个过程整个来讲它是一个非常复杂的一个动力学、物理学、和热力学方面的一个问题。所以这个暴雨预报,它是一个难度很大的地方。那么要想做好暴雨预报,首先要做好监测。因此如我们能够提高暴雨预报的能力,实际上对我们整个国家防灾减灾总体能力上来讲是提高了一步。那么到底我们怎么去做好暴雨的监测?这是我们非常关注的一个问题。

我想下面呢,就我们目前科学技术的发展到什么程度,我给大家做一个介绍。我首先讲一下暴雨是怎么形成的?暴雨我们通常来讲有三种,一种我刚才讲的梅雨锋暴雨。第二个就是台风,或者比台风强度低一些的,我们就叫做热带气旋。第三种,我们夏天经常会遇到的对流引起的暴雨。所以我们大体上我们把暴雨分成这样三种类型。那么暴雨怎么会形成?它最主要的有三个条件。第一个条件,你要形成暴雨一定要有足够的水气。第二个你有了足够的水气,这个水气怎么从下面送到上面去?所以一定要有上升运动。也就是这个水气一定要向上面爬。大家知道,我们大气低层温度比较高,越到高层温度越低。那么大家知道,从来没有说是开了玻璃窗来乘飞机的。为什么?因为飞机飞到高空的时候,玻璃窗外面是零下几十度。所以飞机在高空里面飞的话,一定是密封的。它一定要确保飞机里边,达到我们人体舒适的温度和湿度。所以当我们暖湿的空气爬升上去的时候,它一遇到冷马上就凝结成水滴。如果这个水滴大于我们的上升运动,造成的这样的一个托的力量,那么这个水滴它就会掉下来,所以这样子就形成了暴雨。所以我们讲第二个条件,一定要有很强的上升运动。第三个条件,就是稳定。什么叫稳定?我刚才讲了,如果我们暖的空气在下面,冷的空气在上面。大家都知道,冷的空气它的比重就大,而暖的空气比重就小。因此暖的空气它一定会升上来,而冷的空气就下来。这样子就在大气里边就引起翻腾,冷的要下来,暖的要上去。这引起一翻腾以后它就造成了很强的上升运动,因为暖空气要爬上去,冷空气要下来暖空气上去。这个暖空气一上去以后它就造成了我刚才讲的,遇到冷以后它就会凝结。凝结以后就变成水滴,它就掉下来变成雨。

所以暴雨形成一定是有这三个条件:第一个有丰富的水气。既然是暴雨,那就是雨量很大。那么我刚才讲了,1998年7月21号在武汉引起这么大的暴雨,有1.5倍东湖的水量从空中掉下来。那你可想而知它的水气有多大、多丰富。第二个它一定要很强的上升运动。那么我们想想看,它在三天时间里边把1.5倍的这个东湖的水要托到空中,那你想像看它要多大的力量。第三个你要造成第二个条件,大气里边一定是非常地不稳定。也就是冷的空气拼命向下走,而暖的空气拼命向上走。就造成很大的翻腾,这样就像我们水里一样,我们大家知道烧开水要开的时候,下面的水泡泡一定翻上来。你到水烧滚的时候,也就是到了摄氏一百度的时候,那整个水泡泡都翻上来。这个和大气运动是类似的,如果你底下很热,你就必然的是热的空气拼命朝上跑。而上面的空气冷,下面的空气热。热的空气拼命朝上跑,冷的空气拼命向下掉。所以这就像水里面烧开水一样,烧开水你仔细看,这个水里边就拼命地在那里翻腾。大气其实也是一样的,所以从这个角度上来讲,它这三个条件是必备的。

第二个台风,比台风强度弱一点的我们就叫热带气旋。那么这两个一个是弱一点的小弟弟,一个是大一点的老大哥。仅仅是这个差距,它在结构上基本上非常地类似。我们现在从我们卫星角度上来讲,我们可以非常正确地观测这个台风。这个就是从卫星上看到的台风,我们可以看,这个台风有非常强地螺旋状的云带。也就是说它的气流从外边卷到里边,这就是台风。卷到里边所以中间有个叫台风眼。蓝的可不是云,恰恰是好天。所以中间有一个台风眼,那么台风眼什么样子的呢?其实老一些的同志很有经验,以前我们家里边有个水缸,我们小孩子小时候都喜欢拿个竹竿,在这个水缸里,“啪”一搅。一搅它就转起来,因为中间会空,水会掉下去。两边的水会竖起来的,这就是和台风一样的。你看这个中间没有水,它掉下去。水就在边上,台风就是这样子。所以台风它是空气里面一个强烈的涡旋,就像我们拿个竹竿在水缸里面搅一搅一样。当然这个不是说上面有个上帝在那儿搅,它就是因为某种大气的条件,使得整个的大气在那里旋转。转得越来越快,到最后它就像我们在水缸里面一个棍子在那里搅拌一样。所以这个台风它的结构就是这样的,所以我们稍微有一点点以前生活经验的同志你同他一讲他很能理解什么叫做台风眼。这个其他地方都降水,这里怎么是好天?就是这个道理。

那么第三种暴雨我很简单的讲一下,就是我们夏天看到的热对流引起的暴雨。也就是我今天非常热,明天稍微有一点点冷空气来,这个地面上非常热的空气就一下子就抬升上去,抬升上去以后凝结就变成了暴雨。而这种暴雨下的时间短,范围小,和我刚才讲的梅雨风暴雨那是完全不可以比拟。所以通常来讲,我们有这样三种暴雨:一种是梅雨锋。那就是在季节过渡的时候,由春季到夏季南方一定经历过这个时期。第二种就是台风引起的暴雨。台风引起的暴雨就是这个台风一来,暴雨就来了。台风一走,暴雨就走了。第三种那我们北京也经常会下,下个长一点两个小时,短一点一下子闪过,那么这种就是热对流引起的暴雨。

那么我下面讲这个暴雨怎么监测?你怎么去看暴雨?我刚才给大家讲了一个现象,讲了一个为什么会造成这样的暴雨。那么这个暴雨的监测,现在的装备和二三十年以前大不一样。在座的年轻的同志,他没有去过。可能年纪大一点,或许去过气象站。那时候一个气象站也就是一个电线杆上面一个风标,然后几个百叶箱,这就是气象站。现在可大不一样,现在我们气象上的装备从卫星、雷达到计算机。我们常规监测就是全国的124个探空,所谓探空就是一个气球,气球下面吊一个探测气压、温度、湿度的一个仪器设备。气球一放,这个仪器设备就上去了。它就把气压、温度、湿度测下来,然后通过无线电传下来。那么下面接收这个叫探空,那么这个设备可以说已经几十年了。第二个我给大家看的是雷达。我们以前一般的雷达它没有用多普勒雷达的原理,这个我就不深讲了,以前的雷达只能看到云的回波。因为雷达的无线电波发射出去,一碰到云里的水滴它就反射。那么你就接收到,这就是回波。那么这里面有水滴,那么回波就强。说明这个云越厚,也就是里面的水滴就越大。那么以前就是用一般的雷达只能测到这个,多普勒雷达和它的差别在哪里呢?由于用了多普勒的原理,我还可以测到云里面的风是怎么样的?云里面上升气流多强?它是吹的南风还是北风?今后我们发展到极化雷达,双极化雷达,我不但能够测到它的风多强?我还能测到云里边究竟是冰还是水?还是其他的物质?所以现在的手段和二三十年以前比,那是完全不能比。现在的雷达、卫星、还有其他的一系列的手段,都给我们气象预报提供了充分的信息。

我现在重点介绍卫星和多普勒雷达如何去监测我们的暴雨,也就是近代的手段如何去监测暴雨。那么能够监测暴雨一定也能够监测台风、能够监测其他的天气现象。我现在就以这个为例,这就是目前所有的卫星,大体上就是沿着这个轨道走的。气象卫星大体上分两类:一类就是沿了极轨走的,我们叫极轨卫星。另外一类就是同步卫星,它一直在同一个位置上。原因是它转动的速度和我们地球的速度基本上一致,所以它一直在我们这个头顶上不动。而极轨卫星是绕着极地转的,所以气象卫星有这么两种。那么我们国家现在这两种卫星我们国家都有,我们现在有一个叫“风云1号”,有一个叫“风云2号”。那么“风云1号”就是极轨卫星,“风云2号”就是同步卫星。那么我们现在呢,基本上在我们头顶上一直保留了保持着这样两种卫星在那里运转。这就是我讲的,这就是“风云1号”。这就是中国的“风云2号”,所以大体上是这样的。

这一个是用两部、三部多普勒雷达同时观测一个系统计算到的一个流场。这是用雷达观测到的,从雷达观测到的来讲,这是强的回波。这个回波就说明这个是个雨带,这个就是我们用多普勒雷达观测到的风场。那么我们可以看到,我们现在用雷达可以观测到这么细微的结构。这个细微的结构我们用常规的看不到,原因是什么?我刚才给大家看的那个常规的天气,探空站也好、雷达站也好、它本身的间距多少呢?有两百到三百公里。而我们一个暴雨多大呢?通常的范围在一百公里左右,我们大家可以想像,我们就像去捉鱼一样,如果我们鱼网网眼很大,而这个鱼很小,大家想想看,我用大网眼的渔网能不能抓到小鱼?就绝对抓不到的。小鱼一定会在网眼里边漏掉了,我们的观测也是这样的。暴雨只有一百公里,而我这个气象站的间距是两百到三百公里,我怎么能看到它呢?我一个气象站在这里,一个气象站这里,这个暴雨系统就比它小,就在这里漏过去了。如果用两部雷达同时观测,我就可以抓到了。所以为什么我们要用这样两部、三部雷达去同时观测呢?就是因为我们常规的观测是看不到的,只有这样子看才能看到。

那么暴雨今后会怎么发展?暴雨今后大体上到2025年的时候,我们的数值模式它的水平的分辨就一公里,一公里什么概念呢?我们北京这个区域,我们每一个点,一个点到一个点距离只有一公里。我刚才讲了,我们现在一个测站到一个测站的距离多少呢?是二百到三百公里。我们到了2025年,我们一个点和一个点的观测的距离只有一公里,也就是说,这个街道到那个街道它之间有什么差别?我都可以在计算机里面算出来。在20年以后,我们就可以达到这样的水平。我们到那个时候,我们的地球的静止卫星已经高分辨到什么程度?可以提供五百米时间的分辨只有三十秒钟这样的图像。我们那时候的雷达可以做到双极化的雷达,我不但可以看到风、而且看到云里边是冰还是水、在什么高度都可以看出来。那个时候我们有地球的低轨卫星,通过这个低轨卫星可以给出全球的风场。海上面怎么得到风场?海上你没法去观测,现在我们通过低轨卫星,可以把全球的风场全部给出来。我们可以用空间卫星去观测雷暴,雷暴在什么地方发生?精度可以达到一百米。我们到那个时候,可以通过其他的设备,可以看到整个的大气里边精细的三维风场的结构。我们今后可以做三十天的预报。所以再过二十年,整个的气象事业的发展、气象科学技术的水平的发展,随着计算机、电子学科的发展以及我们气象科学本身的发展,将会有一个非常大的变化。到那个时候我们的预报水平,三天里边的预报大概正确率绝对不会低于90%。所以从这个角度上来讲,我想我们的气象科学和现在比,就像我们现在和二三十年以前比一样,有一个面貌全新的一个概念

1964年6月29日,中国自行研制的中近程火箭继1962年3月21日首次试验失败之后再次发射试验,获得成功;

1966年11月,“长征一号”运载火箭和“东方红一号”卫星开始立项研制;

1966年12月26日,中国研制的中程火箭首次飞行试验基本成功;

10年1月30日,中国研制的中远程火箭飞行试验首次成功,使中国具备了发射中低轨人造卫星的发射能力;

10年4月24日,“东方红一号”卫星在甘肃酒泉航天发射基地由“长征一号”火箭发射成功;

1980年5月18日,中国向太平洋预定海域成功地发射了远程运载火箭,标志着中国具备了发射高轨道人造卫星的发射能力;

1981年9月20日,中国用一枚运载火箭发射了三颗科学实验卫星,这是中国第一次一箭多星发射,使中国成为世界上第三个掌握一箭多星发射技术的国家;

1990年4月7日,中国自行研制的“长征三号”运载火箭在西昌卫星发射基地,把美国制造的“亚洲1号”通信卫星送入预定的轨道,标志着中国航天发射服务开始走向国际市场;

1990年7月16日,“长征”2号捆绑式火箭首次在西昌发射成功,其低轨道运载能力达9.2吨,为发射中国载人航天器打下了基础。

扩展资料:

1980年5月18日,我国向太平洋预定海域发射的第一枚运载火箭获得了圆满成功。这枚运载火箭在高空中顺利完成了火箭级间的分离、发动机关机和火箭头体分离等一系列程序,精确地沿着预定轨道飞完全程,最后在预定区域准确入海。

这次运载火箭的发射成功,是继我国进行、氢弹、导弹核武器研究和发射人造卫星成功后,在尖端科学技术领域里取得的又一项重要成就。

我国运载火箭发射成功后,逐步实现了系列化、通用化和商业化,还开始为国外用户提供服务。“七五”期间,我国共成功地发射了14颗人造地球卫星,其中12颗是通过运载火箭发射完成的。

1990年4月,长征三号火箭将“亚洲一号”卫星送上天,使我国的运载火箭正式进入国际发射市场。1992年,长征火箭又成功发射了“澳星”和“瑞星”,进一步增强了我国航天技术参与国际竞争的实力。

中国网-1980年5月18日 我国第一枚运载火箭发射成功